
curve LM to merger of the nonsymmetric modes and their disappearance. The dashed line cor- 
responds to an approximate condition for disturbance of the symmetry ~ =4e) according to 
(2.2) and (2.3). 

It is interesting that the instability domain of the symmetric mode NLK corresponds to 
the bistability domain obtained in [2]. 

Taking account of the results obtained for the flow considered, it can be assumed that 
a thermal instability can result in flow partition into a jet in the filtration of a strongly 
viscous fluid in a mode with determination of the total flow rate. Thermal wave propagation 
across the filtering stream is possible in case of head determination. 

The authors are grateful to A. G. Merzhanov for interest in the research. 
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MIXED LAMINAR CONVECTION AROUND A VERTICAL CYLINDER WITH A 

CONSTANT SURFACE TEMPERATURE 

Yu. P. Semenov UDC 536.244 

The heat exchange accompanying mixed convection around vertical cylinders plays an im- 
portant role in many technological processes and in the operation of power plants. However, 
this problem has not been studied to a sufficient extent. Most papers concerned with mixed 
laminar convection are devoted to processes on vertical flat surfaces [I, 2] and horizontal 
cylinders [3]. The heat exchange due to mixed convection from vertical cylinders has been 
investigated in individual papers only. The problem of concurrent mixed convection from a 
vertical cylinder with a constant surface temperature is solved in [4] by means of the method 
of local non-self-similarity, which is also used in [5] for solving this problem for a con- 
stant thermal flux qw" Mixed convection from a vertical cylinder for qw = const was investi- 
gated experimentally and numerically in [6, 7]. Thus, mixed laminar convection from vertical 
cylinders for t w = const has been investigated only in [4]. However, the mixed convection 
parameter varied there in the limited range 0 ~ Gr/Re 2 ~ 2; generalized theoretical relation- 
ships were not derived, and only concurrent convection was contemplated. This made it neces- 
sary to undertake the investigation described here. 

Mixed convection from vertical cylinders constitutes a non-self-similar problem. The 
method of local n0n-self-similarityusedin [4, 5] is approximate. In order to obtain the 
solution for the entire region of mixed convection, it is necessary to solve the boundary 
layer equations written in terms of self-similar variables of forced motion in a region close 
to the forced motion and the boundary layer equations written in terms of self-similar vari- 
ables of natural convection in a region close to the natural convection. In this case, it 
is more advisable to obtain directly the numerical solution of the boundary layer equations. 

The method described in [8, 9] is used for solving numerically the problem of mixed con- 
vection from a vertical cylinder. This method was used in [7] for investigating mixed con- 
vection from a vertical cylinder for qw = const and in [10] for investigating natural con- 
vection. 
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The initial system of equations in a cylindrical coordinate system is written in the 
following form: 

the equation of motion, 

Ou Ou 1 O / Ou \ dp 
pu ~ + pv ~ 7 ov = [r~  W )  - -  "aT 4- 9g; (1 )  

the energy equation, 

~ u - ~  + p v ~  = ' 7  ~ f [ ' ~ J '  (2) 

the continuity equation, 

O(pru)/Ox + O(prv)/Og = O, (3) 
where x and y are the longitudinal and the radial coordinates (the y coordinate is measured 
from the cylinder surface); r = R + y (R is the cylinder radius), u and v are the longitudi- 
nal and the radial velocity components, i is the enthalpy, p is the pressure, p is the den- 
sity, ~ is the dynamic viscosity coefficient, % is the thermal conductivity coefficient, and 
g is the acceleration due to gravity. 

The plus sign in front of the term pg in Eq. (I) corresponds to concurrent mixed con- 
vection, while the minus sign corresponds to nonconcurrent convection. 

We introduce a new variable instead of y, 

= ( *  - -  % ) I ( ~  - -  % ) ,  ( 4 )  

w h e r e  @ i s  t h e  s t r e a m  f u n c t i o n ,  d e f i n e d  b y  t h e  r e l a t i o n s h i p s  

O,/Og = pur. O,/Ox = - - p v r ;  (5 )  

~w a n d  *0 a r e  t h e  s t r e a m  f u n c t i o n  v a l u e s  a t  t h e  w a l l  and  a t  t h e  o u t e r  b o u n d a r y  o f  t h e  b o u n d -  
a r y  l a y e r ,  r e s p e c t i v e l y .  

I n  o u r  c a s e ,  3 ,w/3X = O, 3 , 0 / 3 x  = - - r0m0,  w h e r e  r0 i s  t h e  r a d i u s  and  m0 i s  t h e  mass  f l o w  
a t  t h e  o u t e r  b o u n d a r y  o f  t h e  b o u n d a r y  l a y e r .  

For du0/dx = O, considering (4) and (5), we write the initial system (I)-(3) in the fol- 
lowing form in an x versus ~ coordinate system: 

Ou 
o--F+ 

C~ o Ou 0 [ r2Pl~U Ou ] g(Po--P). 
% - % a ~  a~ (%_%)2a~  +-+- p~ ' (6) 

0-7 + *o --  *w a--~ Oco (% _ ,w)~ Oco " (7)  

Equations (6) and (7) are integrated numerically. The calculation scheme developed in 
[8, 9] is utilized fully here. The method of progressive integration is used. Some of the 
features of the scheme are: The derivatives with respect to ~ are determined for the func- 
tion values at the end of the longitudinal integration interval; the variable changes linearly 
between the nodal points in the transverse direction; along the longitudinal coordinate, the 
dependent variables change in steps, and the value of the variable along the entire interval, 
except at the initial point, is equal to its value at the end of the interval. The assump- 
tion of linear variation of the functions with respect to w may cause an error in determining 
their values near the wall, which would affect the accuracy of friction and heat-exchange 
determinations. Therefore, a power distribution of functions is assumed near the wall, while 
the exponent is determined on the basis of the solution for Couette flow. The difference 
equations are obtained by expressing each term of the differential equations in the form of 
the mean-integral value in the control volume. 

In order to obtain the solution, it is necessary to assign the initial velocity and 
enthalpy distributions and the conditions at the wall and the outer boundary. We assume that 
the velocity and temperature distributions before the first interval are uniform. The condi- 
tions at the wall and the outer boundary are assigned in the usual manner. Determination of 
the physical outer integration boundary and of the physical transverse coordinates involves 
certain difficulties. The integration domain 0 ~ ~ ~ I must include all points with real 
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gradients of the dependent variables. The inner boundary coincides with the wall, while the 
outer boundary can be determined indirectly in terms of the rate of exchange through the 
outer boundary of the boundary layer m0. In order to determine m0, Eq. (6) is written for 
~, at a certain distance from ~0 inside the layer: 

*o-*~ a~ r  g( -o)  
romo = au/ao �9 (au/a~o), ~: ~ ," 

Evidently, the value of ~, must differ slightly from I. For the conditions under con- 
sideration, we can assume that [g(P0 -- O)/pu], ~ 0, and we then have 

romo = a~la(o J," 

The derived relationships are used for determining the physical width of the integration 
domain and the physical coordinates of the calculation grid. 

If we have a uniform grid with respect to ~, the chosen x vs ~ coordinate system makes 
it possible to obtain the necessary grid with respect to y. The spacing along x is variable 
and is related to the boundary layer thickness. The longitudinal spacing is proportional to 
the square of the layer thickness. 

One of the basic features of the method is the procedure for determining the heat flux 
and friction at the wall. It is assumed that the Couette flow equations can be used for a 
thin layer at the wall. By solving these equations for a flat wall, we obtain the necessary 
relationships: 

ef t 
"-2"= Re + 2 ~ )~[~g(Po- -P) ] ;  

(8) 

St = i/(Pr Re+), (9) 

where cf is the friction coefficient, St is the Stanton number, Pr is the Prandtl number, and 
Re + = puy/~. 

The effect of axial symmetry is neglected in deriving Eqs. (8) and (9), which may pro- 
duce a calculation error for a large axial symmetry parameter ~ = 4(x/R)Re -~ where Re = 
pu0x/~. 

The numerical solution has been obtained by means of a Minsk-32 computer. The program, 
based on the FORTRAN language, was composed by using the program from [9] with the necessary 
modifications. The program adjustment was effected by using the example of heat exchange 
with forced flow over a plate. The calculation grid was established experimentally. We used 
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30 grid nodes in the direction across the layer. 

The calculations were performed for Pr = 0.7. Along with forced flow calculations, we 
performed calculation of mixed convection from a vertical plate for 0 ~ Gr/Re 2 ~ 10 [Gr = 
gBx3!Tw -- To)p2/~2; Re = PuoX/D] for the approval of the method. The calculation results 
are in good agreement with the data from [2, 4]; they are generalized in accordance with the 
equation 

Nu*/Nu o* = [1 + 2A9 (Gr/Re~)8/4] 1/3, ( 1 0) 

w h e r e  Nu*o = 0 , 2 9 5  Re ~  i s  t h e  N u s s e l t  n u m b e r  f o r  f o r c e d  f l o w  o v e r  t h e  p l a t e .  I n  t h i s  c a s e  
and elsewhere, To is used as the determining temperature, while x is the determining dimen- 
sion. Equation (10) allows the limiting process for passage to forced or natural convection. 

The calculation results for forced convection (Gr/Re 2 < 0.01) and for conditions close 
to natural convection (Gr/Re 2 ~ 10) are shown in Fig. I [curves I and 2; ~ = 2.83 (x/R) • 
Gr-~ For comparison, this diagram also shows the data for forced flow [4] (curve 3) 
and natural convection [11] (curve 4). We observe satisfactory agreement between the re- 
sults. Within the ranges ~ ~ 3 and ~ ~ 1.5, the discrepancy does not exceed 6%. With a 
further increase in ~ and 4, the discrepancy increases, which is, obviously, explained by 
the use of Eqs. (8) and (9) for calculating St and cf/2. 

The results obtained in calculating the heat exchange and friction for concurrent con- 
vection are shown in Fig. 2 (the subscript 0 pertains to forced flow parameters). This fig- 
ure also shows the results obtained in [4] (dashed curves). The data on friction show good 
correlation with those from [4]. With respect to heat exchange, the results for the plate 
(~ = 0) are in agreement. The discrepancy increases with ~, but does not exceed 5% (the 
values ~ = 0; 0.5; 1; 2; 3 pertain to curves I-5, respectively). 

Analysis of Fig. 2 indicates that the effect of buoyancy diminishes with an increase in 
the parameter ~. The value of the parameter Gr/Re 2 below which the effect of natural convec- 
tion is negligible is shifted toward larger values with an increase in ~. Thus, for ~ = 3 
and Gr/Re 2 < 0.4, the effect 6f natural convection is not larger than 5%. For a plate, how- 
ever, this occurs when Gr/Re 2 < 0.01. 

Natural convection exerts a greater influence on friction than on the heat exchange. It 
decreases with an increase in ~. 

Figures 3 and 4 show examples of the velocity and temperature profiles for Gr/Re 2 = 
0.28; 1.35; 5.69; 0.55; 1.13; 5.16 and ~ = 0.5; 0.5; 0.5; 3.03; 3.01; 3 (curves I-6, respec- 
tively). 

The results of heat-exchange calculations are approximated with an error of less than 
5% by means of the expression 

Nu = Nu* + Ax/B, 
where Nu*, the Nusselt number for mixed convection from a plate, is determined by means of 
Eq.  ( 1 0 ) .  

The A coefficient is a function of Gr/Re 2. For determining this coefficient, we have 
derived the expression 
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A = 0.53--0.032 [2 -~ ]g(Gr/He 2) ] ,  

which holds for 0.01 ~ Gr/Re 2 ~ 10. If Gr/Re e ~ 0.01, A = 0.53, which corresponds to data 
for purely forced convection [4], and if Gr/Re 2 ~ 10, A = 0.435, which pertains to purely 
natural convection [11]. 

We performed calculations for nonconcurrent mixed convection in the region close to 
forced motion. Figure 5 shows the calculation results for the flow around cylinders with 
different diameters, i.e., with ~/x ~ = 0; 0.53; 2.6; 4.2; 6.2; 8.8 (curves I-6, respec- 
tively). Separation of the boundary layer occurs in the case of nonconcurrent mixed convec- 
tion. It is evident from Fig. 5 that, with an increase in the parameter of axial sy~netry, 
separation occurs for large values of Gr/Re e. It is known that the time of separation cannot 
be accurately determined within the framework of the boundary layer theory. We can only speak 
of approximate values of the separation parameters. In our work, the calculations came to an 
end when zero velocity was obtained at the first calculation node away from the wall, which 
approximately coincided with a sharp drop in heat transfer. For these conditions, we have 
derived an expression (Fig. 6) for the ratio (Gr/Re2)k as a function of the parameter ~. The 
dependence is approximated by the equation 

(Gr/Re2)k = 0.22 + 0.225~ - -  0.025~ ~. 

We did not succeed in deriving a simple expression for calculating the heat exchange in 
the case of nonconcurrent convection. The diagram of Fig. 5 can be used as a nomogram for 
approximate calculations of heat transfer. 

LITERATURE CITED 

I. O. G. Martynenko and Yu. A. Sokovishin, Heat Exchange by Mixed Convection [in Russian], 
Nauka i Tekhnika, Minsk (1975). 

2. P. M. Brdlik, A. I. ll'inskii, and Yu. P. Semenov, "Control of heat and mass exchange in 
the case of mixed convection in the boundary layer," in: Heat and Mass Exchange -- VI 
[in Russian], Vol. I, ITMO, Minsk (1980), Part 3. 

3. V. A. Belyakov, P. M. Brdlik, and Yu. P. Semenov, "Experimental investigation of mixed 
air convection around a horizontal cylinder," Zh. Prikl. Mekh. Tekh. Fiz., No. 2 (1980). 

4. C. Mokoglu, "Effect of buoyancy on forced convection along a vertical cylinder," Teplo- 
peredacha, No. 2 (1975). 

5. C. Mokoglu, "Effect of buoyancy on forced convection along a vertical cylinder with a 
constant thermal flux at the surface," Teploperedacha, No. 3 (1976). 

6. P. M. Brdlik, Yu. P. Semenov, et al., "Experimental investigation of mixed convection 
from vertical surfaces," Scientific Papers, Moscow Forestry Engineering Institute [in 
Russian], Vol. 138 (1981). 

7. Yu. P. Semenov, "Numerical investigation of laminar mixed convection around a vertical 
cylinder with a constant thermal flux at the surface," Scientific Papers, Moscow Forestry 
Engineering Institute [in Russian], Vol. 146 (1982). 

8. S. V. Patankar and D. B. Spalding, Heat and Mass Transfer in Boundary Layers, 2nd edn., 
Intext (1971). 

9. S.V. Patankar and D. B. Spalding, Heat and Mass Transfer in Boundary Layers, 2nd edn., 
Intertext Books, London (1971). 

10. H. B. Mason and R. A. Seban, "Numerical predictions for turbulent free convection from 
vertical surfaces," Int. J. Heat Mass Transfer, 17, 1329 (1974). 

11. T. FujiiandH. Uehara, "Laminar convective hat transfer from the outer surface of a 
vertical cylinder," Int. J. Heat Mass Transfer, 13, 607 (1970). 

46 


